
Abstract. In this study, the solution of the SchroÈ dinger
equation by a method developed by Nikiforov and
Uvarov which is not based on the manipulation of
formal power series has been schematically presented.
The method gives elegant, easy and exact solutions of
the SchroÈ dinger equation. In order to demonstrate the
applications of the method, solutions of the SchroÈ dinger
equation for the well-known pseudo-harmonic oscillator
and a new symmetrical potential proposed by the
authors are given. The concrete energy spectra and
corresponding wave functions are obtained. The supe-
riority and the limitations of the method compared to
other methods have also been emphasized.
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1 Introduction

The SchroÈ dinger equation (SE) is one of the fundamen-
tal equations of quantum mechanics, i.e. atomic, molec-
ular, nuclear, condensed matter and high energy physics.
The method is capable of providing solutions for the
radial part of e�ective single-particle SE which can
be reduced to an e�ective one-dimensional equation.
The SE is reduced to a hypergeometric equation by an
appropriate coordinate transformation where the solu-
tions are orthogonal special functions.

The method has been presented without the tradi-
tional use of generalized power series. Hence, elegant,
easy and exact solutions of the SE are obtained. In the
examples that we have chosen, the determination of
the discrete energy spectra and corresponding wave
functions are accomplished with the help of classical
orthogonal polynomials.

Various methods such as 1/N expansion [1±4], ana-
lytic continuation [5±7], group theoretical [8±11], series

expansion [12, 13], ®nite di�erence methods [14] and the
phase integral approach [15] could be enumerated
amongst others. One method which has been developed
by Nikiforov and Uvarov (NU method) is based on
solving the SE by reduction to a generalized hypergeo-
metric equation [16].

2 The method

The radial part of the SE for a particle of mass mmoving
under the in¯uence of a potential V(r) is given by

R00 � 2m

�h2
E ÿ V �r� ÿ �h2

2m
`�`� 1�

r2

� �
R � 0 �1�

where ` is the angular momentum quantum number.
This equation enables us to establish the energy levels of
the bound states �E < 0� of the particle as well as the
corresponding wave functions.

In the NU method, for a given V(r), Eq. (1) could be
reduced to the generalized equation of a hypergeometric
type by an appropriate r! s coordinate transformation
(Ref. [16], p. 1):

U00 � ~s�s�
r�s�U

0 � ~r�s�
r2�s�U � 0 ; �2�

where r�s� and ~r�s� are polynomials of a degree at the
most two whereas ~s�s� is of a degree at the most one. In
general, the solutions of Eq. (2) are special functions.

Using the transformation

U�s� � /�s�y�s� �3�
together with

k � kn � ÿns0 ÿ n�nÿ 1�
2

r00 �n � 0; 1; 2; . . .� �4�
Eq. (2) could be reduced to the hypergeometric-type
equation (for an explanation see Ref. [16], p. 253)

r�s�y00 � s�s�y0 � ky � 0 ; �5�
whose solutions are given by the Rodrigues formula
(Ref. [16], p. 8)
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yn�s� � Bn

q�s�
dn

dsn rn�s�q�s�� � ; �6�

where

/0�s�
/�s� �

p�s�
r�s� �7�

s�s� � ~s�s� � 2p�s� �8�

p�s� � r0 ÿ ~s
2
�

�����������������������������������������
r0 ÿ ~s
2

� �2

ÿ ~r � kr

s
�9�

k � kÿ p0 �10�
and the weight function q�s� satis®es the equation
(Ref. [16], pp. 2, 3, 7)

�rq�0 � sq : �11�
Since p�s� must be a polynomial of a degree at most one,
in Eq. (9) the expression under the square root must be
the square of a polynomial. This is possible only if its
discriminant is zero. Hence we obtain an equation, in
general quadratic, for k.

In order to demonstrate the solution of Eq. (2) with
the NU method, the SE written for two molecular
potentials where the solutions are classical orthogonal
polynomials, have been selected. The second potential is
a rather symmetrical potential resembling Manning-
Rosen [19] and Rosen-Morse [20] potentials and has
been recently proposed by the present authors.

3 Solution of the SE for the pseudo-harmonic oscillator

An investigation of the pseudo-harmonic oscillator has
recently been performed [11]. In this manuscript we
re-examine with the purpose of presenting an application
of the NU method.

The radial part of the N-dimensional SE for the
isotropic-harmonic oscillator has the form

R00n` �
N ÿ 1

r
R0n`

� 2m

�h2
E ÿ 1

2
mx2r2 ÿ �h2`�`� N ÿ 2�

2mr2

� �
Rn` � 0 :

Writing down

Rn`�r� � r�1ÿN�=2u�r�
one gets:

u00 � 2m

�h2
E ÿ 1

2
mx2r2 ÿ �h2�d ÿ 1��d ÿ 3�

8mr2

� �
u � 0 ; �12�

where d � N � 2`. The expression

V �r� � 1

2
mx2r2 � �h2�d ÿ 1��d ÿ 3�

8mr2

appearing in Eq. (12), is called the ``pseudo-harmonic''
potential [17].

The radial part of the dimensionless SE of the pseu-
do-harmonic oscillator is given by

u00 � 2eÿ �d ÿ 1��d ÿ 3�
4y2

ÿ y2
� �

u � 0 ; �13�

where

r � ay; a � �h
mx

� �1=2

; e � E
�hx

: �14�

By performing a transformation y2 � s in Eq. (13), the
generalized hypergeometric equation

U00 � 1

2s
U0 � 1

4s2
ÿs2 ÿ b2sÿ c2
� �

U � 0 �0� s� 1�
�15�

could be obtained, where

b2 � ÿ2 e �e < 0�; c2 � �d ÿ 1��d ÿ 3�
4

: �16�
A comparison of Eq. (15) with the reference generalized
hypergeometric equation given by Eq. (2) identi®es the
following:

~s�s� � 1; r�s� � 2s; ~r�s� � ÿs2 ÿ b2sÿ c2 : �17�
When these polynomials are substituted in Eq. (9),

p�s� � 1
2�

�������������������������������������������������
s2 � b2 � 2k

ÿ �
s� c2 � 1

4

q
�18�

has been attained. The constant k could be determined
by the condition that the expression under the square
root should have a double zero which leads to

p�s� � 1

2
� s� 1�4c2� �1=2

2 for k � ÿb2� 1�4c2� �1=2
2 19�a�

sÿ 1�4c2� �1=2
2 for k � ÿb2ÿ 1�4c2� �1=2

2 : 19�b�

8<:
From these equations, the p�s� expression, which makes
the polynomial s�s� given by Eq. (8) have a zero and a
negative derivative in the interval �0;1�, has been
chosen (Ref. [16], p. 67). This condition is satis®ed when

p�s� � 1

2
ÿ s� 1� 4c2

ÿ �1=2
2

: �20�
By substituting p�s� in Eq. (8), one ends up with

s�s� � 2ÿ 2s� �1� 4c2�1=2 : �21�
The polynomials r�s� and p�s� given by Eqs. (17) and
(20) respectively have been substituted in Eq. (7), which
after integration yields

/�s� � sv eÿs=2 ; �22�
whereas the substitution of p0 and k into Eq. (10) gives

k � ÿb2 ÿ 1� 4c2
ÿ �1=2
2

ÿ 1 : �23�
On the other hand, the weight function could be
obtained from Eq. (11) in the form

q�s� � sheÿs : �24�
In Eqs. (22) and (24) v and h are de®ned by
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v � 1� 1� 4c2
ÿ �1=2

4
; h � 1� 1� 4c2

ÿ �1=2
2

: �25�
The quantized energy eigenvalues of the pseudo-

harmonic oscillator are attained by substituting k given
by Eq. (23) together with s0 and r00 into Eq. (4). The
discrete energy eigenvalues in �hx units are given by

en` � �2n� 1� � 1
2 1� �d ÿ 1��d ÿ 3�� �1=2 : �26�

The corresponding eigenfunctions, however, can be
found out from Eq. (6) in the following form:

yn�s� � Bn2
nessÿh dn

dsn sn�heÿsÿ �
: �27�

Keeping in mind the de®nition of Laguerre polynomials,
which are classical orthogonal polynomials [18], one
could write

yn�s� � Lh
n�s� : �28�

On the other hand, the wave functions could be
determined from Eq. (3) giving

Un` � /�s�yn�s� � Cn`sv eÿs=2Lh
n�s� ; �29�

where Cn` is a normalization coe�cient.

4 Solution of the SE for a new symmetrical potential

Let us consider a particle of mass m moving in a
potential ®eld

V �x� � C tanh2�ax� ÿ D

cosh2�ax� �30�

which is similar in shape to the Manning-Rosen and
Rosen-Morse potentials [19, 20] but rather symmetrical
in comparison to the former ones. When the potential
function of Eq. (30) is substituted in the one-dimension-
al SE

ÿ �h2

2m
d2

dx2
� V �x�

� �
w�x� � Ew�x�

and after changing the variable using

s � tanh�ax� �31�
the generalized hypergeometric equation

U00 � �ÿ2s�
1ÿ s2

U0 � 1

�1ÿ s2�2 ÿA2s2 � c2 ÿ b2
� �

U � 0 �32�

is obtained, where

b2 � ÿ 2mE

�h2a2
; A2 � 2m�C � D�

�h2a2
; c2 � 2mD

�h2a2
: �33�

A comparison of Eq. (32) with the reference generalized
hypergeometric equation (Eq. 2) identi®es the associated
polynomials as

~s�s� � ÿ2s;

r�s� � 1ÿ s2;

~r�s� � ÿA2s2 � c2 ÿ b2 : �34�

The substitution of these expressions into Eq. (9) leads
to

p�s� � � �A2 ÿ k�s2 � b2 � k ÿ c2
� �1=2

: �35�
The constant k is determined by the condition that the
expression inside the brackets should have a double zero.
Thus

p�s� � � u for k � A2 (36a)

us for k � c2 ÿ b2 , (36b)

�
where u � b2 � A2 ÿ c2

ÿ �1=2
. Choosing p�s� � ÿus, one

can obtain from Eq. (8)

s�s� � ÿ2�1� u�s : �37�
Introducing p0 and k into Eq. (10), one can ®nd

k � c2 ÿ b2
ÿ �ÿ u : �38�

In this case

/�s� � 1ÿ s2
ÿ �u=2

; q�s� � 1ÿ s2
ÿ �u �39�

have been obtained from Eqs. (7) and (11), respectively.
The discrete energy eigenvalues of the system under

consideration are calculated from Eqs. (4) and (38),
giving

En � ÿ �h2a2

2m
b2n ; �40�

where

b2n � n2 � 1ÿ
����������������
1� 4A2

p� �
n� c2

� 1
2 1ÿ

����������������
1� 4A2

p� �
:

�41�

Here it is worthwhile to point out that for C � 0 in
Eq. (30), A2 � c2 and Eq. (40) leads to

En � ÿ �h2a2

2m
ÿ n� 1

2

� �
� A2 � 1

4

� �1=2
" #2

; �42�

which are the energy eigenvalues of the PoÈ schl-Teller
potential [16, 21, 22].

Lastly, the eigenfunctions are determined from the
Rodrigues formula given by Eq. (6):

yn�s� � Bn 1ÿ s2
ÿ �ÿu dn

dsn 1ÿ s2
ÿ �n�u
h i

: �43�
Using the de®nition of the Jacobi polynomials, which
are classical orthogonal polynomials [18], one ends up
with

yn�s� � P �u;u�n �s� :
Now referring back to Eq. (3), the wave function reads

U�s� � Cn 1ÿ s2
ÿ �u=2

P �u;u�n �s� ;
where Cn is a normalization coe�cient.

5 Application to the ammonia molecule problem

An example of the use of energy eigenvalue (Eq. 40) can
be taken from the treatment of the vibrations of the
ammonia molecule.
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The equilibrium con®guration of the ammonia mol-
ecule has a pyramidal structure with the three hydrogen
atoms located at the vertices of an equilateral triangle
for the base, and the nitrogen atom along a perpendic-
ular line through the centre of the base. Due to the
symmetry of the molecule there will be two equivalent
positions of the equilibrium for the nitrogen, at equal
distances above and below the plane of the hydrogens.
This equivalence of the two minima makes every vibra-
tional level a doublet, a result which is found experi-
mentally (Ref. [23], p. 301)

Such a potential can be made up by joining two po-
tential ®elds V �x� of the form given in Eq. (30) in a
symmetric manner:

V �x� �
C tanh2 ax� a0� � ÿ D

cosh2�ax�a0� ; ÿ1 � x � 0

C tanh2 axÿ a0� � ÿ D
cosh2�axÿa0� ; 0 � x � 1 .

(
�44�

The value of the potential, which is symmetric about
x � 0, is C as x! �1 and has a peak (hill) at x � 0,
where the potential is

V0 � �C � D� tanh2 a0 ÿ D : �45�
It has two minima symmetrically placed at xm � �a0=a
and separated by a potential hill where the potential is D.
If mH is the mass of one of the hydrogens and mN is that
of the nitrogen, then the reduced mass for this case is

simply m � 3mH mN
3mH�mN

� 4:15� 10ÿ27 kg (Ref. [23], p. 305).
The parameters of the potential (Eq. 44) are estimated

by comparing them to the experimental data as in [24]:
C � 0:0124 eV, D � 0:2517 eV, a � 5:75� 1010 mÿ1, a0
� 2:24. Then xm � �0:39 ÊA and the corresponding value
of the dissociation energy is V �xm� � ÿD � ÿ0:2517 eV.
From Eq. (40) the separation between the lower two
pairs is E1 ÿ E0 � 0:1177 eV. The height of the potential
peak (hill) is found from Eq. (45), giving 0:2525 eV, and
the hill is not higher than the value of V �x� at x � �1.
We note that the eigenvalue doublet E0, E1 lies below the
potential hill and is separated from other energy levels
lying above the local maximum of the potential.

6 Conclusions and discussion

By using the NU method including suitable coordinate
transformations, a number of important problems in
theoretical physics and molecular chemistry could be
reduced to a hypergeometric equation (Eq. 2). The
equations which could be reduced to this form are:
Laplace and Helmholtz equations, the equation for the
motion of a single particle in a spherically symmetrical
®eld (for example, the solution of the SE for the
Coulomb ®eld, Ref. [16], p. 320), the harmonic-oscillator
equation (Ref. [16], p. 71), the solutions of the Dirac and
Klein-Gordon equations for the Coulomb ®eld (Ref.
[16], pp. 326±341), the equations of motion of a particle
in an electric and magnetic ®eld, the SE written for
the Natanzon-type molecular potentials (Rosen-Morse,
Manning-Rosen, PoÈ schl-Teller) as well as Morse,
Kratzer and Hulthen potentials [25].

The limitations (restrictions) which are imposed on
the polynomials in the generalized hypergeometric-type
equation given by Eq. (2) make the method unworkable
in the solutions for some of the potentials. For example,
the SE with double-well potentials [26] and non-poly-
nomial and strongly singular potentials [27] could be
mentioned.

In this work to demonstrate the power of the NU
method, the well-known pseudo-harmonic potential has
been chosen for the illustration of the method and it is
observed that the solutions are the same as those using
the group theoretical method [11]. The corresponding
wave functions have been determined as well. The so-
lution for a new potential proposed by the authors that
has been rather symmetrical compared to the Rosen-
Morse and Manning-Rosen potentials has also been
established. By a suitable choice of one of the parame-
ters of this potential, the energy spectra of the PoÈ schl-
Teller potential are readily obtained from the solution
which represent a veri®cation of the results. In the course
of the calculations, there has been no reference to the use
of generalized power series. Exact solutions for the en-
ergy spectra and the wave functions have been estab-
lished which illustrate the advantage of this method.

A practical application of the proposed potential has
been realized for the ammonia molecule (NH3) and vi-
brational energy levels as well as the corresponding wave
functions have been obtained.
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